Geometry of compact shrinking Ricci solitons

نویسندگان

  • Bang-Yen Chen
  • Sharief Deshmukh
چکیده

Einstein manifolds are trivial examples of gradient Ricci solitons with constant potential function and thus they are called trivial Ricci solitons. In this paper, we prove two characterizations of compact shrinking trivial Ricci solitons. M.S.C. 2010: 53C25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of Noncompact Koiso-type Solitons

We construct complete gradient Kähler–Ricci solitons of various types on the total spaces of certain holomorphic line bundles over compact Kähler–Einstein manifolds with positive scalar curvature. Those are noncompact analogues of the compact examples found by Koiso [On rotationally symmetric Hamilton’s equations for Kähler–Einstein metrics, in Recent Topics in Differential and Analytic Geometr...

متن کامل

On 4-dimensional Gradient Shrinking Solitons

In this paper we classify the four dimensional gradient shrinking solitons under certain curvature conditions satisfied by all solitons arising from finite time singularities of Ricci flow on compact four manifolds with positive isotropic curvature. As a corollary we generalize a result of Perelman on three dimensional gradient shrinking solitons to dimension four.

متن کامل

On Four-Dimensional Gradient Shrinking Solitons

In this paper, we classify the four-dimensional gradient shrinking solitons under certain curvature conditions satisfied by all solitons arising from finite-time singularities of Ricci flow on compact four-manifolds with positive isotropic curvature. As a corollary, we generalize a result of Perelman on three-dimensional gradient shrinking solitons to dimension four.

متن کامل

Sharp Logarithmic Sobolev Inequalities on Gradient Solitons and Applications

We show that gradient shrinking, expanding or steady Ricci solitons have potentials leading to suitable reference probability measures on the manifold. For shrinking solitons, as well as expanding soltions with nonnegative Ricci curvature, these reference measures satisfy sharp logarithmic Sobolev inequalities with lower bounds characterized by the geometry of the manifold. The geometric invari...

متن کامل

Geometry of Complete Gradient Shrinking Ricci Solitons

The notion of Ricci solitons was introduced by Hamilton [24] in mid 1980s. They are natural generalizations of Einstein metrics. Ricci solitons also correspond to self-similar solutions of Hamilton’s Ricci flow [22], and often arise as limits of dilations of singularities in the Ricci flow. In this paper, we will focus our attention on complete gradient shrinking Ricci solitons and survey some ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014